Overview and Potential of Digital Decision Support Tools in Promoting Agroecological Irrigation

Ian Miculob

MSc Hydroinformatics and Water Management (EuroAquea+) Erasmus Mundus Joint Masters Scholarship Programme

Supervisors:

Prof. Philippe Audra

Department of Hydroinformatics and Water Engineering Polytech Nice Sophia – University Cote d'Azur Nice, France

Sophie Martin, Ph.D.

National Institute of Sciences and Industries of Living and the Environment Agro Paris-Saclay Campus Palaiseau, France

04 September 2024

Summary

- Introduction/Background
- Research Questions or Objectives
- Assumptions
- Literature review
- Methodology
- Results and Discussion
- Conclusion
- Limitations
- Future Research
- Contribution to the Field
- Acknowledgments

- Increasing irrigation demand with scarce water resources exacerbated by climate change with increasing irrigation demand.
- How to promote water efficiency and reduce water wastage in agriculture.
- The transition to agroecological irrigation and sustainable agricultural practices.
- The use of new technology?

- To characterize the existing DSTs in France.
- Identify motivations, utilization issues, potential benefits, agroecological features, user engagement and communication, and needed improvements.
- Determine how DSTs perform on a plot level.
 - Identify tools' response to different soil types and maize varieties.
 - Assess inter-tool variability in terms of irrigation recommendation.
 - Compare tools' irrigation recommendation to actual irrigation consumption.

Assumptions

- DSTs in France are evolving.
- Motivations is aligned with agroecological principles.
 - Utilization and level of communication is improving.
 - There are still needed improvements.
- DSTs will respond differently to various soil types and maize varieties when tested.
- Comparable irrigation recommendation to the actual irrigation consumption.

Literature Review (pic about the climate)

- The impact of climate change on water resources in France is significant (Azhari and Loudyi, 2021; Schilling et al., 2020; Erraioui et al., 2022; Ougougdal et al., 2020).
- Despite uncertainties in predictions and models used (Schewe et al., 2013).
- Future Projection :

- Increase in temperature by several degrees, more frequent and intense heatwaves

(Wasimi, increasing precipitation in certain areas (Ribes et al., 2029) = effects on crop

yields and productivity (Ceglar et al., 2020).

- Effect water scarcity and high water stress to plants (Oliveria et al., 2012; Volaire et al., 2023).
- Significant economic impact (Neufeld, 2020), although quantification is challenging.

- Irrigation demand is projected to increase: 32 70 M has. expansion by 2050 of irrigated agriculture (Rosa et al., 2020).
- In France: highest consumption of irrigation demand based S3 and S4 carbon neutrality scenarios (ADEME, 2022).
- Agroecological Transition (AT) in the mitigation and adaptation strategies (EU and France policy).
- Benefits, still, there are hurdles to AT: cost (Schaible and Aillery, 2012), technical & technological issues (Pradipta et al., 2022) (expertise), and policies (Grafton et al., 2018).

Literature Review (pic about the climate)

- Achieving AT through technology
- Digital DSTs
 - Optimize irrigation management and enhance efficient (Imbernon-Mulero et al., 2023; Ososanya et al., 2015)
 - Potential to address water scarcity, food security, and environmental sustainability

(Lima et al., 2020; Fernandez, 2017; Karunathilake et al., 2023)

- Use of machine learning algorithms (Chaterji et al., 2020).
- Successful use cases of DSTs in irrigation.
- Also, cases where DST failed to deliver
 - Gaps in the system: complexity and difficulty in analyzing these data (Zaman and Swaminathan, 2018), integration of factors affecting irrigation management (Neupane and Guo, 2019), stakeholders involvement (Arsene et al., 2020)
 - Cost (Meyer, no date)
 - Accuracy (Shah and Das, 2012)

Methodology

•DST Characterization

- Inventory, initial work of Leroux (2023) and AgroTIC (no date).
- Online snowballing (Ghent University, 2023; Wohlin, 2014).
- Inclusion and exclusion criteria.
- DST defined on model and data used, the inputs, interface, outputs, spatial and temporal scale of recommendation, targeted crops and the year that the DSTs launched in the market.

Motivation of DST Conception and Other Features

- Interview those who responded favorably.
- Structured set of questions.
- AI transcriber.
- Insight-lab by data IQ (no date) for knowledge graphs.

Methodology

•Desk Testing – Simulation of the DSTs

- 3 DSTs: Irre-LIS, NetIrrig, Pixagri Wago
- Real plot.
- 3 soil types and maize varieties.
- Parameterized for every simulation.
- 27 plot configurations: 9 plot each,1 configuration = 1 simulation.
- Common reference period.
- Pre-optimal and optimal simulation.
- Sensitivity analysis.

Methodology

• Desk Testing – Simulation of the DSTs

	Irre-LIS	NetIrrig	Pixagri Wago	Tool	S1 constant	S2 constant	S3 constant	
		1001	O1V1	COL/1	COLU	T 71 4 4		
	Silty clayey (silty				SIVI	S2V1	83VI	VI constant
a	alluvium) with an RU	Clayey silt under silty	011-1		S1V2	S2V2	S3V2	V2 constant
SI	Max of 80mm	textures	Silt loam	Irro-I IS	\$1V3	\$2V3	\$3V3	V3 constant
C	Clayey under other with	Sandy clay under clay-		IIIC-LIS	5175	52 V 5	575	v 5 constant
S2 a	an RU Max of 125mm	sand textures	Sandy clay					
Si	silt sand under other (silt				01111	0.01.11	0.01.11	T T 1
sa	and) with an RU Max of	Medium silt sandy under			SIVI	S2V1	S3V1	VI constant
S3	80mm	silt sand textures	Sandy loam		S1V2	S2V2	S3V2	V2 constant
Maize Variety				NT (T -	01110	00110	001/2	T IO
		Low water requirement		NetIrrig	S1V3	S2V3	S3V3	V3 constant
		ETM grain corn						
V1 F	P7326 (Early variety)	(reference)	Grain Corn (Early)					
PC	0725 (Medium maturity	Grain corn 0.8 ETM Allier			S1V1	S2V1	S3V1	V1 constant
V2	maize variety)	department	Grain Corn (Semi-early)		S1V2	S2V2	S3V2	V2 constant
V3	P0037 (Late variety)	But late grain G4 420-460	Grain Corn (Late)	Pixagri Wago	S1V3	S2V3	\$3V3	V3 constant

Table 1 shows the comparable soil type and maize variety used in the testing for the 3 DSTs.

Table 2 details a total 27 plot configurations .

Figure 1 shows the test plot and its location in Vinon-sur-Verdon named as Nicolas Gassier plot with an area of about 14.7 hectares (<u>https://earth.google.com</u> and NetIrrig).

Location of the Real Plot (Nicolas Gassier)

- Coordinates: 43.73273418417999, 5.803116291785647.
- located near Vinon-sur-Verdon in the southeast of France.
- Area: about 147,620 m2 m² (perimeter of 1,575.38m).
- Using a conventional tillage management system
- Maize is the crop being cultivated in the said plot

DST Characterization

- Emerging DSTs using advanced technologies.
- Majority plot level (45); least at territor level (5).
- With overlaps.

Figure 2 indicates that the plot-level spatial scale of recommendation is where most of the

DSTs are concentrated.

DST Characterization

- Real-time (15).
- Daily (11).
- Also, with overlaps.

Figure 3 illustrates the wide-ranging temporal scales of recommendations provided by the DSTs, with majority having a real-time recommendation

Temporal scale of recommendation

4	N
	1 year : Agricultural Weather
	30-day : Agricultural Weather
	2 to 3 weeks : Farm Solutions/CERES
	15 davs : Weenat
	10-day : Agro Meteo, Agricultural Weather
	9 days ahead : Maiseo
	9-day : Tameo, Cap2020
	7 days ahead : AgroClim (Promete), Challenge Agriculture
	7-day : GrowSpehre, Wago, Net-Irrig
	6-day : Sowater
	5-day : Irricrop, Brad, Oenoview 365 HYD, MySolem
	3 to 7 days : Metos
	3-day : IrrigAssistant (with Columbus)
	Daily : Abelio, Weather Measures, FieldNet Advisor, Aqualis, AliaTerra, Irricrop, Xilem, FloraPulse, StemSense,
	Agri scope PIXAGRI Irrigation
	3 to 6 hours : Preciel
	Every hour : Weather Measures, FieldNet Advisor, Brad, Agricultural Weather, Phytech
	15 minutes : Preciel, Metos, Fruition Sciences Sap Flow,
	10 minutes : Meteobot Hydro
	5 minutes : Metos
	Every minute : PlanCT
	Real time : CropWise, Meteoria, Aqualis, AliaTerra, Hydroscore, IrrigAssistant (with Columbus), Weenat, HD Rain
	IQBLUE CLARA, Meteus, Fruition Sciences Sap Flow, OTT Hydromet, SinaSens Smart Agri, Hiphen,
	Geocarta,
	No specific (information) scale, dependent on the OAD connected: Fruition Sciences 360viti, Wiingou, POM
	(IFV), Vintel, AspaView

- DST Characterization
- Sensors as widely used.
- About half either stan-alone or with crop model and satellite data.
- Crop model + in-situ sensors, +satellite data, or used alone.

- DST Characterization
- Majority targeting field crops and market gardening.

Name of DST		Targeted crops				
	viticulture	field crops/market gardening	arboriculture	horticulture		
Hydroscore, Wilem, Fruition						
Sciences Sap Flow, Geocarta,						
Oenoview 365 HYD, POM (IFV)						
ApexVine, Vintel						
FloraPluse			orchards			
PlantCT			apple and stone fruit			
				apple, peach, citrus,		
	includes			avocado, cherries,		
StemSense	wine grapes		orchard	nuts, and more).		
Meteus			tree crops			
AgroClim (Promete)		potato, onion				
SinaSens Smart Agri			walnuts, olives, etc.		green spaces	
				canned vegetables		
				(beans, peas,		
				flageolets, salsify,		
		cereals, corn, peas, sunflowers,		carrots, vegetables		
81 · 1 ·		soybeans, sugar beets,		Ibeetroot, asparagus,		
Net-Irrig		sorghum		potatoes, onion		
Meteobot Hydro			tree crops			
Condiditons)						
			orchards, tree nuts,			
Farm Solutions/ LERES			grapes, citrus crops,			
A			tree crops, i.e. apple,			
Agriscope (Dendrometer)			apricot, etc.	1.0		
Aspaview				production	big cultures	
Imbet	_			beet		
Seventer			orchards, i.e. citrus,			
Deutoch			pomegrate, etc.			
Phyteon Challes as Assistations	_		tree cops			
Challenge Agriculture		cereals, corn	fruits, i.e. meion, etc.	vegetable, seeds	other irrigated crops	
MySolem		corp soubeap suptower				
Abelio		wheat green bean and notato				
Precial		orp and wheat				
Proplylise		large crops				
		ubast)			specially crops	
	_	wrieat)				
Uropwin	_	soybean				
Maisaa		corn, popcorn and all types or				
Madarata	_	waxy.				
Moderato		maize softwipterwheat.com.barley				
Tamao		other new species				
Tameo		Istraw cereals soua/soubean				
		wheat, durum wheat, corn				
		(fodder), seed maize, potatoes,				
Irre-LIS		spring barley, tobacco.				
Notilria					seasonal crops	
	+				annual crons: large	
					crops and industrial	
Wago		corn and wheat			crops	
		all types of corn, wheat, cotton,				
PIXAGRI Irrigation		vegetables				

Figure 5 classifies crops targeted by the DSTs, with significant number focusing on field crops/market gardening. .

DST Characterization

- Increasing presence for the last 10 years.

Timeline of DST Market Launch in France

Figure 6 shows the chronology of market launch of DSTs in France, increasing their increasing presence for the last 10 years.

Motivation for the DST Conception

Questions: Why did you come up with this DST? What are you trying to address with this DST? What needs or issues are you trying to meet and address at the microcosm (farm) and macrocosm level (societal)? How this DST will be able to address those needs or issues? What are the specific and important features of the DST for it to be able to meet or address those needs and issues?

-Maximize water efficiency. -Water saving potential; assistance in field experiments. -Better yield margin. -Better decision-making process -Agroecological adaptation.

motivations behind the creation of the yield margin at the field level, and balance model and other important

•Ease of Use

•Questions: What feedback do you receive from your users in terms of the ease of use of the DST and the application (hardware and software)? In terms of DST features, what makes it easy to use for the farmers? Are there any features of the DST, both hardware and software, that you find or consider challenging for the users? At what length do you provide technical assistance to your user?

-Users not knowing total available water in the soil. -Issues on crop coefficients and evapotranspiration. -Lack of thermal stress for hot temperatures in the model. -Other difficulties: field experiments.

Need for improvement in crop coefficients using satellite data

Difficulty in field experiments to assess real water savings

soil, concerns on crop coefficients and evapotranspiration, and lack of thermal stress for hot temperatures in the model.

Communication

•Questions: How do you keep your users engaged with your product in terms of information accessibility and availability? Are the level of information about the DST and communication with your users sufficient?

-Different modalities.

communication with their users by utilizing

social network management

Improvements

•Questions: Are there any existing features of the DST you consider require further improvement or upgrade? What additional features or improvements would you like to do in order for the DST to perform better and better (i.e. numerical model/aspect, etc.)?

-Numerical aspect of the model. -Other modules and features.

-Climate change and irrigation constraints.

-Data integration in the model for better recommendations.

Desk Testing: Pre-Optimal Simulation

Figure 12 shows the S1V1 simulations for Irre-LIS, NetIrrig and Pixagri (top to bottom) when the readily available soil water or the minimum threshold of easily usable reserve curve was crossed, by the soil water deficit curve in Irre-LIS, the amount of water in the soil in NetIrrig, and the water depletion curve in Pixagri, indicating the **onset of water stress**.

Desk Testing: Pre-Optimal Simulation

Plot Configuration	Irre-L	IS	NetIrr	. D.	Pixagri V	Vago	Plot Configuration	Irre-LIS	NetIrrig	Pixagri Wago
S1V1		05 June '24		04 July '24		03 June '24	S1V1	04 July 2024	12 July 2024	18 June 2024
S1V2		04 June '24		12 June '24		03 June '24	S1V2	27 June 2024	12 July 2024	18 July 2024
S1V3		04 June '24		29 June '24		03 June '24	S1V3	27 June 2024	02 July 2024	19 July 2024
S2V1		08 June '24		03 July '24		26 May '24	S2V1	04 July 2024	12 July 2024	19 July 2024
S2V2		08 June '24	- "	11 June '24	Green line	26 May '24	S2V2	27 June 2024	12 July 2024	19 July 2024
S2V3	Dhua lina	08 June '24	Green line	28 June '24	(water	26 May '24	S2V3	27 June 2024	02 July 2024	19 July 2024
S3V1	(soil water	04 June '24	(amount of water in the soil) to	07 July '24	Vellow line	04 June '24	S3V1	04 July 2024	12 July 2024	19 July 2024
S3V2	deficit) to red	04 June '24	yellow line	03 July '24	(RUF/ or total	04 June '24	S3V2	27 June 2024	12 July 2024	19 July 2024
S3V3	line (RFU)	04 June '24	(RFU)	01 July '24	available water)	04 June '24	S3V3	27 June 2024	02 July 2024	19 July 2024

Α

В

Table 3 shows shows the start date when RUF curve was crossed for each combination of all the DSTs indicating the onset of **water stress** (A), and start date of **high sensitivity to water stress** for each simulation in all of the DSTs (B).

Desk Testing: Optimal Simulation

Figure 13 shows Irre-LIS, NetIrrig and Pixagri Wagi optimal simulations for S1V1.

Desk Testing: Optimal Simulation

Plot			<u>Pixagri</u>
configuration	Irre-LIS	NetIrrig	Wago
S1V1	197	60	225
S1V2	197	132	220
S1V3	200	108	216
S2V1	175	60	246
S2V2	184	132	247
S2V3	183	120	255
S3V1	197	60	204
S3V2	200	57	206
S3V3	204	96	203

Table 4 the total irrigation performed per combination since sowing until July 18.

• Python code used to get the average irrigation for every soil type and maize variety per tool, and also to visualize.

🛃 Irrigati		
	jimport pandas as pd jimport matplotlib.pyplot as plt	
	<pre># Your data Irrigation_IrreLIS = [197, 197, 200, 175, 184, 183, 197, 200, 204] Irrigation_NetIrrig = [60, 132, 108, 60, 132, 120, 60, 57, 96] Irrigation_Pixagri = [225, 220, 216, 266, 247, 255, 226, 206, 203] Soil_type = ['silt loam', 'silt loam', 'silt loam', 'Sandy clay', 'Sandy clay', 'Sandy clay', 'Sandy loam', 'Sandy loam Maize_variety = ['Early', 'Hed', 'Late', 'Early', 'Hed', 'Late', 'Early', 'Hed', 'Late'] # Create DataFrame for Soil_type data_soil = pd.DataFrame{{</pre>	
	'Irrigation_ <u>Irre</u> LIS': Irrigation_IrreLIS,	
	'Irrigation_NetIrrig': Irrigation_NetIrrig, 'Irrigation_ <u>Pixagri</u> ': Irrigation_Pixagri, 'Soil_type': Soil_type })	
	# Calculate means for each soil type means_soil = data_soil.groupby('Soil_type').mean() print(means_soil)	
	<pre># Create DataFrame for Maize_variety idata_variety = jd.DataFrame({</pre>	
	# Calculate means for each soil type means_variety = data_variety.groupby('Maize_variety').mean() print(means_variety) ####################################	

Desk Testing: Optimal Simulation

Mean Values of Irrigation Tools by Soil Type

NetIrrig, and Pixagri Wago, suggesting that the tools are

			Pixagri
Soil Type/Tool	Irre-LIS	NetIrrig	Wago
Silt loam	198.0	100.0	220.3
Sandy clay	180.7	104.0	249.3
Sandy loam	200.3	71.0	204.3
Maize variety			
Early	189.7	60.00	225.0
Medium	193.7	107.0	224.3
Late	195.7	108.0	224.7

Table 5 shows the average recommended irrigation by tool, soil type, and maize variety

Late

Early

Medium

Figure 15 shows the average optimal irrigation of the three DSTs, suggesting that, except for Pixagri, the tools are sensitive in varying degrees to maize varieties.

Late

Med

Sandy Loam • Patt

- am Pattern not accurately followed.
 - Only Irre-LIS providing least irrigation water for sandy clay (180.7mm).

Sandy Clay

Silt Loam

sensitive to soil types

- Pattern, except for Pixagri, followed.
 With Irre US and Nathrig
 - With Irre-LIS and NetIrrig

Irrigation Tools

Irrigation IrreLIS

Irrigation NetIrrig

Irrigation Pixagri

- lowest for early grain corn.

Early

- highest for late grain corn.
- In between for medium grain corn.

Mean Values of Irrigation Tools by Maize Variety

Comparison of Irrigation Recommendation to Actual

Average Irrigat	tion for May	Difference from Actual				
	2024 (in m	Irrigation Consumption (in mm)				
Soil Type/Tool	Irre-LIS	NetIrrig	Pixagri	Irre-LIS	NetIrrig	Pixagri
Silt loam	198.0	100.0	220.3	53.0	-45.0	75.3
Maize variety						
Medium	193.7	107.0	224.3	48.7	-79.3	79.3

Table 6 shows that shows that **NetIrrig** is **underestimating** while **Irre-LIS** and **Pixagri** are **overestimating when compared to the actual irrigation consumption in 2023.**

Conclusion

- DST trajectory is increasing.
- Emphasis on agroecological and sustainable features.

- Motivations and benefits promoting water efficiency, reduction

of water use/wastage, and, importantly, on actionable advice.

- Needed improvements: numerical aspect, data integration, easy of use.

- Sensitive to soil types and maize varieties.
- Underestimation/Overestimation when compared to actual irrigation consumption.

Limitations

- Length of period of simulations.
- Parameters/values only as close as possible.
- Use of 2024 actual irrigation consumption for comparison.

- Tool comparison for 2024.
 - Many plots.
 - Different points in France.
 - With more crops and combinations.

- Challenge the initial 2 major classifications of DSTs.
- Insights on the needed improvements of the DSTs.
- Re-validation of the different irrigation recommendations of the tools.

- Alliance H@rvest Nicolas Urruty (SCP), Aurelie Cornuejols (AgroParisTech), Xavier Pinochet Terres Inovia), Claire Richert (AgroParisTech), Helene Tribuillois (Terres Inovia), Clement Diot (SCP), and Thomas Schmit (Agreen Tech Valley)
- Interview Respondents Sophie Gendre (Arvalis), Laurent Huet (GrowSphere), Elodie Patelli (Agralis), Bruno Malnar (ITK), Taher Mestiri (Seabex SAS)
- Arvalis and Terranis for free use of their OADs (Irre-LIS and Pixagri Wago)

This study was funded under the Alliance H@rvest IRRI+ Project.

QUESTIONS?