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Abstract. Understanding  how  digital  decision  support  tools  can  potentially  promote
agroecological  irrigation  is  of  great  significance  in  light  of  the  need to  promote  sustainable
agricultural  practices,  considering  that  the  irrigation  demand is  increasing  with scarce  water
resources as exacerbated by climate change. In this study, the existing digital DSTs in France
were  characterized  in  order  to  provide  insights  on  the  type  of  tools  that  widely  used  new
technologies, and their utility based on the spatial and temporal scales of recommendation. It also
synthesized the motivations and potential benefits, sustainability features and improvements that
the conceptors considered for these DSTs. Using a real plot, three DSTs were tested to assess the
tools’ irrigation recommendation and determine how it is affected by different soil types and
maize varieties. It was found that DSTs in France has been widely and increasingly used for the
last 10 years, with majority of these DSTs using new technologies as vectors, such as sensors and
satellite data, primarily targeting field crops and market  gardening, and  with majority of the 64
identified DSTs having plot level and real time spatial and temporal scales of recommendations,
respectively, with some overlaps. Additionally, the interviews with six of the DST conceptors
highlighted the primary motivations, including maximizing water efficiency and water saving
potential,  achieving  better  yield  margin,  and  promoting  better  decision-making  process  and
agroecological  adaptation.  These  DSTs  support  sustainable  practices  and  agroecological
agriculture  through  and  optimization  of  energy  and  resource  use  in  the  manufacture,  and
adoption  of  carbon  neutral  technologies  and  climate-friendly  features.  However,  some
improvements were emphasized to enhance ease of use and advice, such as the numerical aspect
of  the  model,  data  and  modules  integration,  and  climate  change  and  irrigation  constraints
enhancement. Finally, testing of the three DSTs, including Irre-LIS, NetIrrig, and Pixagri Wago,
indicates that the three tools are sensitive, although in varying degrees, to the three different soil
types and, with exception of Pixagri Wago, to the three different maize varieties in terms of
recommended irrigation needs in mm averaged in the period considered. Also, comparison of the
tools’ irrigation recommendation to the actual irrigation consumption of the study plot suggests
an overestimation in Irre-LIS and Pixagri Wago, and underestimation in NetIrrig.

Keywords:  agroecological  irrigation,  decision  support  tools,  digital  agriculture,  precision
agriculture
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1 INTRODUCTION

There  is  a  growing consensus  that  climate  change  is  imminent  and affecting  natural
systems, including the food and agricultural systems, since water scarcity is one of the potential
challenges posed by the scenario. The situation could even be exacerbated, especially for the
water-scarce farming regions in many parts of the world. Hence,  the adoption of sustainable
agricultural  practices  that  increase  water  use  efficiency  and  optimize  crop  production  is
important.  Modern  agriculture  that  uses  digital  tools  is  considered  a  panacea  in  driving
efficiencies  across  different  farming  models  (Abdulai,  2022).  The  tools  that  this  type  of
agriculture offers, including digital decision support tools (DSTs), have the capacity to provide
farmers with tailored agronomic advice and help them make informed decisions about irrigation
practices. By utilizing agro- and hydrometeorological-related data and information, coupled with
crop models, these digital DSTs can advise farmers in real time on the timing and the amount of
irrigation  water  to  apply  for  a  crop (Lin  et  al.,  2017),  thus,  providing them more  informed
decisions (Cetin et al., 2021) and consequently  driving efficient water use.

The potential of the DSTs in promoting agroecological irrigation in France in the context
of climate change and often dwindling water resources can likely be significant. In addition to
efficient water use, DSTs can possibly improve in reducing water waste, thus, mitigating the
unfavorable environmental impacts of irrigation practices, since most of these tools use advanced
mathematical models and machine learning algorithms that enhance the accuracy of water need
predictions.  Agroecological  irrigation  is  an  important  movement  that  highlights  the  strong
interconnection between the natural ecosystems and sustainable water management, and it is an
important  aspect  of  France’s  efforts  to  transition  towards  more  environmentally-friendly
agricultural practices (Niturkar, 2021; Addulai, 2022). Along this line, digital DSTs could help in
achieving this  goal,  providing benefits  to  farmers  in  better  managing their  risks  and natural
resources (Vlasova, 2019).

However, the full potential of the digital DTSs is faced with several key challenges that
need to be addressed. Firstly, the conceptors of these tools need to improve the ease of access
and user-friendliness  of  these  technologies,  which  pose a  significant  challenge  to  the  strong
uptake by the various farming population with different socio-cultural backgrounds, preferences
and skills (Anastasiadis et al., 2018). Some of these technologies could be complex and require a
level of technical expertise that all farmers may not readily have (Abioye et al., 2020), which can
likely be addressed through provision of training and support to farmers. Additionally, there are
also  concerns  over  data  privacy and security,  data  accessibility  and interoperability  that  can
likely make a farmer reluctant to adopt these technologies (Anastasiadis et al. 2018). There are
also challenges being pointed out concerning the integration of multitude of agronomic, climatic,
financial, and social factors that affect irrigation decisions (Cetin et al., 2021; Chowdhury et al.,
2023; Mulele et al., 2023; Hedley et al., 2009), which also have some uncertainties pointed in the
literature.

Understanding  the  potential  benefits  of  digital  DSTs  in  irrigation  in  promoting
agroecological irrigation in France is an increasingly interesting domain. However, there are still
knowledge gaps and thus, this study aims to characterize the existing digital DSTs in France.
Additionally, it explores to identify the motivation of the conceptors in creating these DSTs and
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understand  the  issues  on  utilization,  potential  benefits,  agroecological  features,  level  of
communication extended to the users, and the needed improvement. Further, it aims to determine
how some of  these  DSTs  perform in  the  farm by testing  them on a  plot  level,  specifically
identifying  how the  tools  respond  to  different  soil  types  and  maize  varieties,  the  inter-tool
variability in terms of irrigation recommendation, and on how the tool’s recommended irrigation
is compared to the calculated water needs. It is assumed that the DSTs in France are evolving and
that the conceptors motivations in creating them are also aligned with agroecological principles,
utilization  and  level  of  communication  is  improving,  and  that  there  are  still  needed
improvements.  Finally,  it  is  assumed that  when tested,  the  DSTs  will  respond differently  to
various soil types and maize varieties, the inter-tool variability is consistent for each soil type
and maize variety, and the recommended irrigation would be comparable to the actual irrigation
consumption of maize in the plot.

2 LITERATURE REVIEW

2.1 Climate projection, water scarcity and agriculture

The impact of climate change on water scarcity has become a pressing concern. Although
uncertainties  exists  in  the  predictions  and  models  used,  changes  in  precipitation  and  other
climatic variables have been observed, which pose a significant threat to water supply in many
regions  in  the world (Schewe et.  al.,  2013).  These changes  include  extreme events  that  can
impact  negatively  the  natural  systems.  Approximately  four  billion  people  experience  water
scarcity  at  some  point  during  the  year  (Mekonnen  and  Hoekstra,  2016),  and  this  could  be
exacerbated by population growth and an uptick in food and energy demand (Schewe et al.,
2013; He and Rosa, 2023).

Recent studies would suggest that the impact of climate change on water resources in
France  is  significant,  hence,  it  poses  an  important  implications  to  the  country’s  water
management, planning and adaptation strategies as far as ensuring its long-term water security is
concerned (Azhari and Loudyi, 2021; Schilling et al., 2020; Erraioui et al., 2022; Ougougdal et
al., 2020). The country’s climate is projected to undergo significant changes in the future (Ceglar
et  al.,  2020),  marked  by  an  increase  in  temperature  by  several  degrees  Celsius,  with  more
frequent and intense heatwaves based on climate models (Wasimi, 2010), alongside contrasting
increasing precipitation events in certain areas (Ribes et al., 2019) and with the latter having a
significant effects on crop yields and productivity (Ceglar et al., 2020).

Water  scarcity  reduces  photosynthesis  and  hinders  nutrient  uptake,  thus,  leading  to
nutrient deficiencies and affecting plant’s growth (Oliveria et al., 2012). Without enough water
needed, the plant experiences water stress leading to wilting, reduced leaf expansion, and even
cell death (Volaire et al., 2023). Along this line, without enough adaptation measures, including
the use of efficient digital technologies, there would be lower crop yields, especially for water-
intensive crops like maize (Gonzales-Camacho, Mailhol, and Ruget, 2008). In addition, it may
alter the types of crops that can be grown in certain regions of France (Altieri et al., 2015), since
the crops would be substituted with those that can withstand high water stress. 
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The economic impacts of climate change-induced water scarcity issues can be significant,
characterized by the decrease in production output, reduced contribution of the agriculture sector
in the Gross Domestic Product, fluctuating food and market prices, that can potentially increase a
number  of  people  at  risk  of  hunger  and  food  insecurity  based  on  the  State  of  Food  and
Agriculture report by the Food and Agriculture Organization (Neufeld, 2020), which is consistent
with a study found in Pakistan on how the life, biodiversity, and socio-economic activities have
been affected (Mehmood, 2021). However, due to the interplay of complex environmental and
agronomic factors, modelling the impacts of climate on major crops (Celgar et al., 2020), and
consequently, quantifying the economic impacts in French agriculture is challenging. 

2.2 Agroecology and the future of irrigation

Globally,  irrigation  demand  is  projected  to  increase  although  there  is  difficulty  in
pinpointing the exact figure. However, the expansion in the irrigated agriculture lands indicate
the demand for irrigation water will increase, as the irrigated area could expand by 32 million
hectares by 2050 as estimated by the Food and Agriculture Organization of the United Nations,
or a potential expansion of at least 70 million hectares for the same period given that recent
studies suggest underestimation by the models being used (Rosa et al., 2020). Conversely, there
are  limitations  that  can  hinder  translating  this  increased  projection  into  a  reality,  such  as
reversion of irrigated areas to rain-fed agriculture due to impact of climate change (Rosa et al,
2020), and the depletion of groundwater resources, which irrigation is highly reliant to, hence, a
serious sustainability issue (Hejazi, Edmonds, and Chaturvedi, 2012)

In a nutshell, in France, four scenarios characterizing the different pathways relative with
carbon  neutrality  were  considered  in  projecting  water  demand  by  2050.  Among  the  four
scenarios, S3 and S4 indicate the highest consumption of irrigation water by major agricultural
crops, such as maize, legumes, cereals and fruits for the period (ADEME, 2022). S3 scenario is
where technological development is juxtaposed in addressing environmental challenges, while
S4 is  a  repairing bet  scenario with preservation of  the lifestyles of the early 21st century in
addition to putting global ecological issues as triggers to economic and technological progress
(ADEME, 2024).

Irrigation demand is increasing, but water resources are potentially dwindling in many
regions.  Hence,  it  poses  a  great  challenge  on  the  sustainability  of  irrigation  practices.  For
instance, ground water is a major water resource contributing about 60% for human consumption
with a significant amount allocated for irrigation in France (Roux, 1995). However, those areas
dependent on these water resources, such as those with semi-arid and arid climates, are already
experiencing water stress,  and the situation is  expected to be exacerbated by climate change
(Pradipta et al., 2022).

To  address  the  sustainability  in  irrigation  practices,  the  agroecological  transition  has
become  an  integral  component,  highlighting  its  currency  in  the  mitigation  and  adaptation
strategies.  This transition adopts  the ecological principles in  order to achieve a resilient  and
productive agricultural systems (Desa and Jia, 2020; Loconto, 2020). As far as water resources is
concerned,  it  aims  to  transform the  irrigation  practices  by  addressing  water  waste,  nutrient
depletion,  and  environmental  degradation,  and  thus,  promotes  more  efficient  irrigation
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techniques  that  reduce  water  usage  and  improve  water  distribution  (Dittmer  et  al.,  2023).
Through the National Strategic Plan for the Common Agricultural Policy 2023-2027, France is
supporting for the roll-out of European Union’s agricultural policies, highlighting the adoption of
agroecological principles at the national level (Ministry of Agriculture and Food Sovereignty,
2023). Additionally, the government’s strong commitment to agroecology is manifested in its
investments in research and development programs in this area (Bellon and Ollivier, 2018).

While  the  benefits  of  agroecological  transition  are  present,  there  are  also  hurdles  to
overcome. Changing to more efficient systems comes with a cost (Schaible and Aillery, 2012),
which can be prohibitive given the different circumstances of the farmers (Ward et al., 2016).
Also, there are technical and technological issues (Pradipta et al., 2022) that require a certain
degree of expertise, and supportive policies and market structures, such as those policies that
incentivize efficient water use (Grafton et al., 2018).

2.3 Agroecological Transition and the Use of Technology

Achieving  agroecological  transition  is  replete  with  promising  innovations.  In  the
agriculture sector, the aim is to provide sustainable, nutritious food for a growing population
amidst some constraints and limitations. Among various means, the potential of technology to
aid en route agroecological pathways is significant, especially when the benefits can be properly
leveraged and valorized on the ground. At present, technology is advancing in a faster pace, with
promising innovations that can be of great help. For instance, precision agriculture has been trail-
blazing,  improving  water  use  efficiency,  reducing  water  wastage  and  energy  consumption
(Hakkim et al.,  2016), and thus, promoting sustainability because of its ability in decreasing
environmental footprint of agricultural production (Shannon et al., 2018).

Gaining strong currency in the modern agriculture are the digital decision support tools
(DSTs).  These  DSTs  offer  innovative  solutions  to  farmers  looking  to  optimize  resource
management and enhance productivity (Lima et al., 2020). In particular, it can optimize irrigation
management and enhance its efficiency (Imbernon-Mulero et al., 2023; Ososanya et al., 2015). In
a larger scale, they have the potential to address global challenges related to water scarcity, food
security, and environmental sustainability (Lima et al., 2020; Fernandez, 2017; Karunathilake et
al., 2023). Because it is able to provide a useful decision support, recommendations, and insights,
it helps the user in terms of the amount of irrigation water to be applied at different growth stages
of  the  crop  taking  into  consideration  the  regional  climate  conditions  and  cropping  systems
(Neupane and Guo, 2019). This capacity is enhanced with the increasing use of machine learning
algorithms that analyze sensor data and other various types of data in order to identify patterns
for irrigation decisions (Chaterji et al., 2020).

There have been several successful use cases of the digital DSTs in irrigation. Some of
these include DSTs used in the Zhanghe Irrigation System in China using weather forecast and
sensors (Wang et al., 2019), in Mekrou river basin in Africa using a tool that ultimately improve
crop productivity (Udias et al.,  2018), the low-cost system in the northern Italy that showed
significant  water  savings  (Viani  et  al.,  2017),  the  web-based DST “Fruchtfolge  in  Germany
(Pahmeyer,  Kuhn,   and  Britz,  2021),  the  AQUATOOL DST in  an  Andalusian  basin  using
hydrological and water management models (Ruiz-Ortiz et al., 2019), the LIFE 4Doñana project
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using  crop  needs  prediction  models  (Proyecto  LFE  4Doñana,  no  date),  and  the  ISSCADA
System in the U.S.A. (Evett et al., 2020).

While DSTs have various accounts of success, there are also cases where they have failed
to deliver the expected benefits  because of some challenges in  both the implementation and
adoption. Cantor et al. (2021) noted that some DSTs use a multitude of data and analyzing them
is sometimes a difficult task and that there are still  gaps in the existing systems (Zaman and
Swaminathan,  2018),  such  as  on  how  these  systems  integrate  the  various  factors  affecting
irrigation  management  (Neupane  and  Guo,  2019),  including  involvement  of  the  various
stakeholders  in the process, as characterized by situations where these systems are not in tune to
the needs of the end-users, because these systems are in themselves often complex (Arsene et al.,
2020). In a study of farmers in the Herault department in France, the main barriers identified in
the adoption of advanced monitoring tools include cost, lack of time and labor, and the absence
of water shortages (Meyer, no date). Lastly, the accuracy of these DSTs are not fool-proof, since,
readings  can  be  influenced  by  sensor  placement,  calibration,  and  interference  from
environmental conditions for those that are using sensor data, although this has been addressed
by advanced machine learning algorithms (Shah and Das, 2012), computational intelligence and
agro-hydroinformatics with information technology (Abioye et al., 2022). Still, the complexity of
the irrigation system is in itself a challenge (Karar et al., 2020), in addition to the fact that the
data  being  used  are  variable  and heterogenous  for  the  machine  learning  algorithms to  fully
capture them (Abioye et al., 2022), and, hence, these are the constraints that the DST conceptors
have to address in order to improve the reliability and accuracy of these tools.

3 MATERIALS AND METHODS

3.1 Characterization of the Digital DSTs

In characterizing the digital decision support tools, an inventory was carried out through
online using the already existing surveys conducted, including those from the initial work of
Leroux (2023) and AgroTIC (2024), as primary sources, while also expanding the search through
snowballing  (Ghent  University,  2023;  Wohlin,  2014).  Only  existing  DSTs  in  France  were
considered, and those in the lists but which do not have any information available online were
excluded. Information that provide better understanding of the DST were gathered,  and each
DST was defined based on the model and data used, the inputs, interface, outputs, spatial and
temporal scale of recommendation, targeted crops and the year that the DSTs were introduced in
the market so that their evolution can be observed.

3.2 Motivation of the DST Conceptors and Other Features

To better  understand the motivation in the creation of the DST, issues on utilization,
potential  benefits,  agroecological  features,  level  of  communication,  and  the  needed
improvements from the conceptor’s perspective, we first contacted all the manufacturers of the
DST included  in  the  inventory  list  whose  tools  have  been  used  in  France,  and  those  who
favorably responded to the invitation were interviewed. Using a structured set of questions, the
interviews were conducted online and the transcriptions of the interviews were automated using
a transcriber with artificial intelligence (AI) by TurboLearn LLC (2024), which has a 99.8 per
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cent accuracy. Another AI tool, the Insight-lab by data IQ (no date), was also used to generate the
knowledge graphs on specific themes from the interviews.

3.3 Desk Testing – Simulation of the DSTs

For the desk testing and simulation of the models, three tools, namely, Irre-LIS, NetIrrig,
and Pixagri Wago, were selected from the inventory of the existing DSTs in irrigation in France.
To test the tools, we used the plot with an area of about 147,620 m2 (perimeter of 1,575.38m)
located  near  Vinon-sur-Verdon  in  the  southeast  of  France,  with  geographic  coordinates
43.73273418417999, 5.803116291785647, as shown in Figure 1. The plot, named as Nicolas
Gassier  plot,  has  been  using  a  conventional  tillage  management  system,  which  “involves
moldboard plowing and harrowing”  (Wahl et al. 2004, p.821). Based on field assessment and
observation, the soil typology of the study plot is predominantly silt loam with an available water
capacity of 175mm over 120cm considering the soil texture and using pedotransfer functions.
Maize is the crop being cultivated in the said plot.

As already presented, one of the aims of the study is to determine how some of these
DSTs perform in the farm by testing them on a plot level, specifically identifying how the tools
respond to different soil types and maize varieties, the inter-tool variability in terms of irrigation
recommendation,  and  on  how  the  tool’s  recommended  irrigation  is  compared  to  the  actual
irrigation consumption. Specifically, it would be interesting to investigate the sensitivity of each
DST selected  for desk testing to different soil types and maize varieties, because each soil type
and each maize variety requires specific water needs or irrigation based on, among other factors,
its soil texture or structure and its agronomic characteristics, respectively, according to available
literature.
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Figure 1 shows the test plot and its location in Vinon-sur-Verdon named as Nicolas 
Gassier plot with an area of about 14.7 hectares ( https://earth.google.com and NetIrrig).
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The  plot  was  parameterized  for  every  simulation  to  provide  consistency  and
comparability  of  results.  Since  the  three  tools  required  various  information,  the  same input
information  and  data  available  in  the  tool’s  model  were  used,  or  the  closest  data  required
between and among the tools were adopted from one simulation to another, while selecting the
parameters that best represent that soil or maize variety selected from one DST to another for
every specific plot configuration.

Three crop varieties, P7326, P0725, and P0937, with different maturity characteristics,
identified as early variety, medium variety, and late variety, respectively, were used for the three
soil  types, namely, silt  loam, sandy clay and sandy loam, and the comparable soil types and
maize varieties for the other DSTs were used as detailed in Table 1. These three soil types are
common in the area and also in France, where maize is suitable for cultivation, with varying
effect to yield (Biberdzic et al., 2018).

  Irre-LIS NetIrrig Pixagri Wago

Soil

S1

Silty clayey (silty allu-
vium)  with an RU Max

of 80mm
Clayey silt under silty 

textures Silt loam

S2
 Clayey under other with
an RU Max of 125mm

Sandy clay under clay-
sand textures Sandy clay

S3

Silt sand under other (silt
sand) with an RU Max of

80mm
Medium silt sandy under

silt sand textures Sandy loam

Maize Variety

V1 P7326  (Early variety)

Low water requirement
ETM grain corn (refer-

ence) Grain Corn (Early)

V2
P0725 (Medium maturity

maize variety)
Grain corn 0.8 ETM Allier

department Grain Corn (Semi-early)

V3 P0937  (Late variety)
But late grain G4 420-460

Drome department Grain Corn (Late)
Table 1 shows the comparable soil type and maize variety used in the testing for the three DSTs.

Using the same plot, with an area of  15 hectares, 7.31 hectares, and 7.0 hectares for Irre-
LIS, NetIrrig, and Pixagri Wago, respectively, a total of 27 plot configurations for testing was
used  with  every  tool  having  9  plot  configurations  each  (Table  2).  One  plot  configuration
corresponded to one simulation of the tool. 
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Tool S1 constant S2 constant S3 constant  

Irre-LIS

S1V1 S2V1 S3V1 V1 constant
S1V2 S2V2 S3V2 V2 constant
S1V3 S2V3 S3V3 V3 constant

         

NetIrrig

S1V1 S2V1 S3V1 V1 constant
S1V2 S2V2 S3V2 V2 constant
S1V3 S2V3 S3V3 V3 constant

         

Pixagri Wago

S1V1 S2V1 S3V1 V1 constant
S1V2 S2V2 S3V2 V2 constant
S1V3 S2V3 S3V3 V3 constant

Table 2 details a total 27 plot configurations used in the testing, with each tool having 9
configurations

It is important to clarify that the discrepancy in the area of the plot used in Irre-LIS, as
indicated in Table 3, was due to the two different estimates of the area made using GoogleEarth.
Also, the discrepancies of the areas of plots used in NetIrrig and Pixagri Wago to that of Irre-LIS
was mainly due to practical reasons, since using the whole area, especially for Pixagri Wago, was
expensive – the tool provided and used was a trial/testing version, which was only limited to a
maximum of 10 hectares, and it would be more expensive to use more than 10 hectares for the
simulations of the remaining plot configurations. However, regardless of the discrepancies in the
plot  areas  used,  the  location  of  the  plots  is  what  greatly  determines  the  irrigation
recommendation  of  the DST,  since  DSTs are generally  location-dependent,  rather  than area-
dependent.  Additionally,  these  tools  rely  on  real-time  data  collection  about  crop  water  and
nutrient  requirements  (Plascak  et  al.,  2021),  which  would  suggest  that  optimal  irrigation
application is based on  regional climate conditions and cropping systems (Neupene and Guo,
2019), where exact plot location influences factors such as soil moisture, nutrient availability and
microclimate (Neupane and Guo, 2019; Plascak et al.,  2021), although larger plot areas may
exhibit a different heterogeneity in soil properties, crop growth, and water requirements, thus
affecting  irrigation  strategies  (Neupane  and  Guo,  2019),  but  clearly  not  the  irrigation
recommendation provided by a DST.
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Irre-LIS
Postal code 83560
Municipality Vinon-sur-Verdon
Tool Parameters Information and Data
Date Week/pl 5-May-24
Previously Irrigated Yes
My previous (crop) Mais Grain
Rain zone area selection Zone 1
Irrigation equipment Other (sprinkler irrigation)
Irrigated area (ha) 15
Previously irrigated Yes
Irrigation dose (mm) 427
Duration of water tour 
(days) 2

Type of water resource
Watercourse or alluvial

aquifer (individual)
Area of Plot used 14.7ha+

NetIrrig
Stone rate % 10
Maximum exploitable soil 
depth 150cm
Settlement rate % 10
Number of days needed to 
water the plot 2
Type of irrigation Sprinkler irrigation
Fixed irrigation capacities  
Area of plot used 7.31ha

Pixagri Wago

Harvest date

October 3 (Early variety)
October 23 (Medium)

November 2 (Late)
Maxium irrigation dose 427
Number of days per water 
cycle 2
Irrigation system Spray irrigation
Area of plot used 7ha

Table 3 shows the additional parameters required for Irre-LIS, NetIrrig and Pixagri Wago,
while using the comparable soil type and maize variety respective to every plot configuration,
with the same sowing date, number of watering cycle and type of irrigation for all DSTs for those
DSTs with the same input parameters, while all other parameters are specific to the that tool.
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The irrigation being recommended by the tools to avoid water stress was determined
starting from the period when water stress was evident. To get the total irrigation applied for
every tool starting from sowing, a common reference end period of irrigation application, which
was July 18, 2024, was selected,  since it  was the maximum date common to all  three DSTs
where irrigation recommendations could be predicted when the simulation was run. Based on the
design of the tool, a water stress would be avoided if the line would be kept above the readily
available water (RUF) curve, which is addressed by applying irrigation to provide the optimal
water requirement of the crop. The sowing date was set on May 5, 2024, coinciding the same
sowing day from last year for the study plot.

Two scenarios were considered, pre-optimal and optimal. Pre-optimal scenario refers to
the  initial  simulation  of  the  tool  given the  inputs  used,  where  field  variability,  amount  and
magnitude of the water stress, and irrigation strategies were evaluated before implementing them
in the field (Lin et al., 2020; Neupane and Guo, 2019). This scenario also provided information
and timing to commence irrigation application. On the other hand, optimal scenario refers to a
complete simulation when the irrigation recommendation was applied for the study period to
avoid high water stress of the crop, wherein the tool’s water balance was also recalculated every
irrigation application. Sensitivity analysis was conducted to determine what DST is affected by
the type of soil and variety of maize crops in terms of irrigation advice being provided. The
computation and visualization of the sensitivity of the tools in terms of irrigation application
advice with respect to soil type and maize variety for every tool was automated and coded using
Python and run using PyCharm Community Edition 2020.3.3. Finally, the difference between the
DST irrigation  recommendation  root  and  the  actual  irrigation  consumption  of  the  plot  was
determined to assess whether the DST is underestimating or overestimating. 

4 RESULTS AND DISCUSSION

4.1 Characterization of the Digital DSTs

Initially, two main families of DSTs were identified, namely, those that are using a water
balance  model  and those  that  are  based  on the  plot-level  measurements  each with  different
advantages and disadvantages (Gendre, 2021). However, the inventory and characterization of
the existing DSTs in France indicate that there are emerging DSTs using advanced technologies,
which necessitate to expand the categorization of families of DSTs. This is likely due to the
speed  of  innovations  in  this  area.  In  addition,  the  literature  indicates  a  growing  focus  of
development and implementation of DSTs in France, although the exact available area affected is
yet to be determined (Neupane and Guo, 2019; Plascak et al., 2021). Spatially, of the total 64
DSTs, majority of the DSTs have a plot-level recommendation with 45 of them, and with the
least  number focusing at  the territory level,  where fiver  of them were identified (Figure 2).
Moreover,  some DSTs overlap,  as some provides plant-plot spatial  scale of recommendation,
with 5 of them; plant-farm, 2 ; plot-farm, 7; plot-territory, 4; and plot-farm-territory, 2. DSTs
specific only to a particular spatial scale were as follows: plant level, 5; plot level, 31; farm level,
10; and, territory level, 1.
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Figure 2 indicates that the plot-level spatial scale of recommendation is where most of the
DSTs are concentrated. 

Temporally, a significant number of DSTs provide real-time recommendation or status of
the  field  and  plant  conditions  with  15  of  them,  followed  by  DSTs  providing  daily
recommendations with 11 (Figure 3). It is important to note that these DSTs also use predictive
models in order to provide advance irrigation recommendations to the farmers. Some of these
DSTs  also  overlapped  in  their  temporal  scale  of  recommendation,  such  as,  five-minute
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recommendation, 15-minute, and up to 7 days, with one DST; real-time and three-day, 1; real-
time, daily, and seven-day, 1; daily and seven-day, 1; 10-day, 30-day, and  one-year, 1.

Figure 3 illustrates the wide ranging temporal scales of recommendations provided by the
DSTs, with majority having a real-time recommendation.
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Sensors have become an indispensable tool that provide input data to the DST, and about
half  of  the  existing  DSTs are  either  stand-alone,  or  are  used  together  with  crop model  and
satellite data,  as shown in Figure 4.  Moreover,  a crop model is  usually coupled with in-situ
sensors, satellite data, or is used alone.

Figure 4 classifies the DSTs according to the different vectors, with majority of them 
using sensors.

Majority of the crops targeted by the DSTs are field crops and market gardening crops,
such as maize, cereals, sorghum, wheat, barley potato, spinach, peas, soybeans, tobacco, onion,
sunflower  as  indicated  in  Table  4.  In  general,  the  DSTs  have  put  their  focus  in  providing
irrigation recommendation for field crops, market gardening, and arboriculture.
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Table 4 classifies the crops targeted by the DSTs, with a significant number focusing on
field crops/market gardening. The blank colored boxes refer to the general crop category given in
the heading used by the online sources, and did not mention any specific crop with that category.
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Name of DST  Other targeted crop categorization

VisioGreen Stations, Cap2020, 
Aqualis, IrrigAssistant All crops

Weedriq, Columbus, Metos
All irrigated crops: (potatoes, onions, shallots, garlic, 
vines, vegetables, big cultures)

Weather Measures, Meteoria, 
FieldNET Advisor, Irricrop, Weenat, 
OTT, Hydromet, Brad, Hiphen, Smart 
Crops Field Sensor, SAT-IRR, 
Agricultural Weather, HD Rain, 
Wiingou, Agro Meteo, Telaqua Various crops (specific crops not identified)

AliaTerra

Customizable according to agricultural activity: 
mangoes, olive, apples, almonds, pineapples, 
watermelons, salads, cabbage, tomatoes, etc.

GrowSphere
Perennial crops (open field even greenhouse: 40 
crops)

Table 5 provides additional categorization of the targeted crops of the DSTs that are not 
using the standard crop categorization.

Figure 5 shows the chronology of the market launch of DSTs in France, indicating the 
increasing presence of DSTs for the last 10 years.
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4.2 Synthesis Interview with DST Manufacturers 

Based on the  interviews with  the  six  DST conceptors,  including Irre-LIS of  Arvalis,
GrowSphere, Aqualis (Agralis), Hiphen, Vintel, and NetIrrig (Seabex),  their responses provide
useful insights on the motivation behind these tools,  the ease and level of use,  the potential
benefits, sustainability and agroecological features, the way of communicating about these DSTs,
and improvements.

4.2.1 Motivation for the DST Conception 

Questions: Why did you come up with this DST? What are you trying to address with this
DST? What needs or issues are you trying to meet and address at the microcosm (farm) and
macrocosm level (societal)? How this DST will be able to address those needs or issues? What
are the specific and important features of the DST for it to be able to meet or address those needs
and issues?

The development of Decision Support Tools (DSTs) in agriculture is primarily motivated
by the need to  specifically directly help farmers decide when and how much to irrigate, and
consequently,  enhance water efficiency, optimize irrigation practices,  and, address challenges
related to  water  scarcity,  climate change,  and technological  advancements in  the agricultural
sector. These tools aim to assist farmers in making informed decisions about irrigation, crop
management,  and  resource  utilization.  The  key  objectives  of  DSTs  include  improving  crop
yields, promoting sustainability, and contributing to environmental conservation efforts. 
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Figure  6  is  the  AI-generated  knowledge  graph,  highlighting  the  major  themes  on
motivations, which shows that some of the major motivations behind the creation of the DSTs
are to maximize water efficiency, water saving potential while assisting as well field experiments
in this area, better yield margin at the field level, and  promote better decision-making process
and agroecological adaptation through the use of satellite and crop data, water balance model and
other important parameters. 

At the farm level, DSTs like Irre-LIS, GrowSphere, and Aqualis aim to enhance decision-
making  processes  related  to  irrigation,  crop  rotation,  and  water  management.  By  providing
personalized recommendations based on real-time and/or historical data, these tools empower
farmers to optimize their irrigation strategies, leading to increased efficiency, profitability, and
resource conservation. The integration of economic indicators, agronomic models, and strategic
tools in DSTs facilitates a holistic approach to water management, benefiting both farmers and
the larger community.

Societally,  DSTs  play  a  crucial  role  in  promoting  sustainable  water  management
practices, addressing water scarcity issues, and contributing to broader environmental goals. By
improving water efficiency at the farm level, these tools support societal concerns related to
water  conservation,  climate  change,  and  food  security.  The  integration  of  databases,
meteorological  data,  and crop information  in  DSTs simplifies  decision-making processes  for
farmers,  leading to  reduced water  usage,  increased crop yields,  and enhanced environmental
sustainability.
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Figure  7  shows  the  needs  and  issues  to  be  addressed,  including  research  and
development, such as accurate integration of thermal stress and hydric stress in the model and on
how to meaningfully integrate yield data and other data in the tool,  and the tool’s  ability to
provide advice on water saving and water efficiency maximization.

To  address  the  needs  and  achieve  the  objectives  outlined  above,  DSTs  incorporate
specific features such as comprehensive monitoring and control systems for irrigation, automated
valve operation, sensor integration for real-time data collection, and crop models for tailored
recommendations. These features enable farmers to make informed decisions about irrigation
practices,  optimize  water  usage,  and  enhance  crop  productivity.  Additionally,  DSTs  offer
modules  for  limiting  volume  management,  cover  crop  modeling,  and  economic  analysis,
enhancing  their  utility  and  effectiveness  in  addressing  water  efficiency  and  sustainability
challenges.

In summary, DSTs in agriculture are essential tools for modernizing farming practices,
improving water  efficiency,  and promoting sustainable agriculture.  By leveraging specialized
knowledge,  collaboration  with  technical  institutes  and  organizations  specializing  in  various
crops, and incorporating advanced technologies like drones, sensors, and real-time data analysis,
DSTs  contribute  to  enhancing  crop  management,  increasing  productivity,  and  supporting
environmental conservation efforts. The continuous improvement and innovation in DSTs ensure
their relevance and effectiveness in addressing the complex water management needs of modern
agriculture, benefiting both farmers and society as a whole.
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4.2.2 Ease of Use

Questions: What feedback do you receive from your users in terms of the ease of use of
the DST and the application (hardware and software)? In terms of DST features, what makes it
easy to use for the farmers? Are there any features of the DST, both hardware and software, that
you find or consider challenging for the farmers/users? At what length do you provide technical
assistance to your users/farmers?

The interview with the above-mentioned DST respondents provided valuable insights
into the feedback regarding the ease of use of DSTs and their applications, focusing on both
hardware and software aspects. The feedback highlighted user experiences, features contributing
to ease of use, challenges faced, and the level of technical assistance provided to users for each
tool.

Starting with Vintel, the feedback emphasized positive user experiences, particularly in
terms of  irrigation advice  and disease management.  Users  found the tool  user-friendly,  with
essential information displayed clearly. Features like a FAQ section, webinars, and step-by-step
guidance enhanced usability. However, challenges were noted in the water features, indicating
areas for improvement. Vintel aims to enhance the irrigation module by focusing on cover crop
management and nitrogen fertilization. Technical assistance is primarily provided through email
and phone support, with a collaborative approach between the support and development teams to
address user queries effectively.

Moving on to NetIrrig, the respondent highlighted the ease of use of their DST, with over
380 customers finding the platform user-friendly. Training videos and a mobile app facilitated
access to information, reducing help requests. Challenges included adjusting growth stages and
understanding recommendations, which the company is addressing through satellite imagery and
generative AI modules. Technical assistance is provided through phone support, video tutorials,
and webinars, ensuring timely help for users.

The interview with GrowSphere focused on irrigation and fertigation management. The
system aims to make irrigation easier and more efficient for growers, with features like alerts and
recommendations.  Challenges  included  the  level  of  involvement  required  from  farmers  in
maintaining the hydraulic system. Technical assistance is provided through training and support,
adapting to the specific needs of farmers in different regions. Ongoing developments include
integrating remote sensing and satellite data for more accurate recommendations.

Aqualis  highlighted  that  their  digital  DST  is  designed  for  effective  irrigation
management.  Users appreciated the robustness and longevity of the tool,  with customization
options available. Challenges were noted for older farmers in using smartphones and the app,
requiring technical assistance. Aqualis provides support through a technical hotline, tutorials, and
email assistance. Hardware features like Sentek probes offer precise soil humidity measurements,
aiding in water consumption data collection.
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Figure 8 highlights the issues in the DSTs and other challenges concerning and affecting
ease of use, including difficulties in field experiments and in knowing total available water in the
soil,  concerns on crop coefficients and evapotranspiration,  and lack of thermal stress for hot
temperatures in the model.

The Irre-LIS tool highlighted challenges in understanding total available water in the soil
for  effective  irrigation  management.  A web  application  is  being  developed  to  address  this
challenge. Technical assistance is provided through training sessions and an online platform for
calculating total available water. The tool focuses on maximizing water efficiency and improving
net  margins  for  farmers,  with  ongoing  efforts  to  enhance  the  model  and  incorporate  agro-
ecological considerations.

Lastly,  Hiphen's  DST,  used  by  breeders  and  research  centers,  offers  a  user-friendly
platform named Cloverfield for data sharing and analysis. Ongoing efforts focus on improving
the  processing  chain  and  visualization  of  results.  Technical  assistance  is  personalized,  with
campaign managers assigned to projects for direct support.

In conclusion, the feedback on the ease of use of DSTs varied across tools, with common
themes of user-friendly interfaces, challenges in specific features, and ongoing improvements.
Technical assistance was provided through various channels,  ensuring users receive adequate
support  in  utilizing  the  tools  effectively.  The  insights  from  the  interviews  underscore  the
commitment  of  these  companies  to  continuous  improvement  and  user  satisfaction  in  the
agricultural sector.
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4.2.3 Potential Benefits

Questions: How are the DSTs able to translate to these benefits? In specific terms, at 
what stage of the crop you find the DST most useful/beneficial to the farmer, and/or at what stage
it is frequently used (peak utilization)?

Collaboration between farmers, technical experts, and researchers is essential to translate
these  benefits  into  actionable  strategies  for  improving  crop  health  and  overall  agricultural
outcomes.

In terms of peak utilization, DSTs typically align with critical stages of the crop cycle,
such as planting, irrigation, and harvesting, where timely information is crucial for maximizing
productivity. Specific stages of the crop cycle where DSTs are most beneficial include critical
growth periods or in response to environmental factors like drought or disease outbreaks. For
example,  during key stages like bud break, flowering,  or periods of heightened stress, DSTs
provide valuable insights for farmers to make timely decisions and optimize crop health.  By
utilizing  DSTs  during  these  peak  utilization  periods,  farmers  can  proactively  address  stress
factors, minimize crop damage, and maximize yields.

Figure 9 summarizes additional specific benefits of DSTs, such as enhancing quality and 
aromatic profile of the crop, and savings in money and resources.

The use of DSTs in agriculture offers practical solutions to complex decision-making
processes, benefiting both individual farmers and the agricultural sector as a whole. These tools
provide accurate recommendations, adjust growth stages, integrate weather data, and leverage
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advanced  technologies  to  enhance  usability  and  effectiveness.  By  focusing  on  improving
sustainability,  incorporating  artificial  intelligence,  and  integrating  satellite  imagery,  DST
providers continue to evolve to meet the changing needs of farmers and contribute to a more
sustainable future for agriculture.

4.2.4 Sustainability and Agroecological Features

Questions: How did you integrate sustainability in the manufacture of the DST in terms of
resource and energy use from manufacture to use in the farm? Do you consider any opportunities
to make the design and manufacture of the DST more sustainable/agroecological, and what are 
those opportunities?

Responses from the DST conceptors provided valuable insights into the integration of
sustainability in the manufacture and use of digital DSTs in farming practices. These discussions
emphasized  the  importance  of  continuous  improvement,  user  feedback,  and  data-driven
enhancements  to  optimize  resource  and  energy  use  while  promoting  eco-friendly  farming
practices. 

GrowSphere highlighted the significance of data collection to track user interactions with
the DST, enabling analysis to optimize performance. The tool's global reach and collaboration
with manufacturers underscored a commitment to sustainability and innovation. Aqualis focused
on  sustainability  through  repairability,  energy-efficient  manufacturing,  and  user  engagement.
Efforts to enhance the DST included incorporating AI to further improve the tool’s capacity for
data  analysis  and  improve  accuracy  and  reliability  in  providing  water  management
recommendation

Hiphen's  collaboration  with  industry  actors  aimed  to  enhance  tools  like  Irre-LIS  for
irrigation support, focusing on improving data fusion capabilities and visualization for accuracy
and efficiency. On the other hand, Irre-LIS highlighted challenges in soil data accuracy and the
importance of water efficiency for better net margins. Efforts were made to adapt the tool to
cover crops and non-soil work, aligning with agroecological principles.

NetIrrig emphasized sustainability through carbon-neutral cloud providers and advanced
technologies like AI to optimize recommendations and reduce water consumption. The company
aimed to scale the impact of their DST across agricultural value chains, promoting sustainability
practices. GrowSphere focused on optimizing water, fertilizer, and energy use through their DST,
aiming to reduce water consumption while maintaining crop yields.

Vintel's reliance on existing weather data and minimal hardware requirements inherently
contributed to environmental sustainability. Opportunities for enhancing sustainability included
cover  crop  management,  irrigation  optimization,  and  addressing  local  constraints.  Irre-LIS
prioritized  water  efficiency,  collaboration  with  research  institutions,  and  incorporating
agroecological principles for sustainable farming practices.
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Figure 10 shows that the major sustainability features incorporated in the DSTs include
climate-friendly  features,  use  of  advance  technologies  provided  by  carbon  neutral  cloud
providers and optimizing the use of energy and other resources, specifically in the manufacture
of the tool, and adapting the tool in order to promote sustainable and agroecological practices in
agriculture by integrating climate and other data in the tool.

Overall,  the  interviews  highlighted  a  collective  effort  towards  sustainability  in  DST
manufacturing and use. Key themes included optimizing resource and energy use, enhancing
user  engagement,  and  continuous  improvement  based  on  feedback  and  data  analysis.
Opportunities  for  making  DSTs  more  sustainable  and  agroecological  included  incorporating
advanced technologies, improving water management recommendations, and adapting tools to
cover various agricultural practices.

In conclusion, the integration of sustainability principles in DST manufacturing and use
is crucial for promoting eco-friendly farming practices and resource optimization. By leveraging
user  feedback,  data-driven  enhancements,  and  collaborations  with  industry  partners,  DST
manufacturers  are  actively  working towards  a  more  sustainable  and agroecological  future  in
agriculture.  The  commitment  to  continuous  improvement,  innovation,  and  environmental
responsibility  showcased  in  these  interviews  signifies  a  positive  shift  towards  sustainable
farming practices globally.
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4.2.5 Communication

Questions: How  do  you  keep  your  users  engaged  with  your  product  in  terms  of
information  accessibility  and  availability?  Are  the  level  of  information  about  the  DST and
communication with your users sufficient?

DST  providers  shed  light  on  how  these  tools  engage  users  through  information
accessibility  and  availability.  The  DSTs  prioritize  user  engagement  by  offering  a  range  of
resources,  such  as  websites,  training  videos,  mobile  apps,  social  media,  webinars,  and
partnerships with agricultural organizations. The companies emphasize continuous improvement
in communication to ensure users have the necessary information to maximize the benefits of the
tools.  While  the  level  of  information  and  communication  is  considered  sufficient  by  some
companies like NetIrrig, others acknowledge the need for ongoing enhancements in this area. For
instance, Vintel conducts training sessions to familiarize users with the tool and improve user
proficiency over time. The tools like Aqualis and GrowSphere focus on sustainability and user-
centric  design  to  enhance  user  experience  and  address  irrigation  challenges  effectively.  The
companies  value  user  feedback  and  incorporate  suggestions  for  continuous  improvement,
ensuring that users receive relevant and timely information. The DSTs collaborate with technical
institutes and research centers to enhance their tools based on industry insights and user needs.
Overall,  the DSTs prioritize user  engagement  through personalized features,  robust  technical
support,  and proactive communication strategies to  optimize irrigation management practices
and decision-making processes.

Figure 11 shows that DSTs employ different strategies in providing technical assistance,
and to improve engagement and communication with its users by utilizing different modalities,
including,  but  not  limited  to,  video  tutorials,  webinar,  phone  support,  form  submission,
exhibitions, social network management.
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4.2.6 Improvements

Questions: Are there any existing features of the DST you consider require further 
improvement or upgrade?  What additional features or improvements would you like to do in 
order for the DST to perform better and better (i.e. numerical model/aspect, etc.)?

Common themes across the interviews include the need to enhance the numerical aspect
of the models used in the tools to provide more reliable and tailored recommendations.  The
importance of refining the models to improve accuracy and effectiveness was emphasized to
better support farmers in managing irrigation and fertigation on their fields. Additionally, the
interviews highlighted the significance of incorporating considerations for climate change and
irrigation constraints to ensure the DSTs remain relevant and valuable in the agricultural sector.

Furthermore,  the  interviews  underscored  the  importance  of  user  feedback  and
engagement  in  refining  the  DSTs.  By  analyzing  usage  data  and  comparing  it  to
recommendations, insights can be gained on how farmers interact with the systems and where
improvements are needed. This feedback loop can help developers tailor the systems to better
meet the needs and preferences of users, ultimately enhancing their performance and usability.
The collaboration with technical institutes like Arvalis and ITB was also highlighted as crucial
for  progressing  in  stress  detection  and  assessment,  indicating  the  significance  of  external
expertise in enhancing the capabilities of the DSTs.

In terms of additional features or improvements needed, the integration of remote sensing
data,  such as  satellite  data,  was  discussed  as  a  future  development  to  enhance  the  systems'
capabilities.  The  goal  is  to  make  the  systems  more  autonomous  and  user-friendly,  allowing
farmers to make informed decisions based on the data provided by the DSTs. Moreover, there
was a focus on enhancing the integration of data sources for more accurate recommendations and
actively seeking feedback from users  to  drive continuous improvement.  By addressing these
aspects,  the  DSTs  aim  to  become  more  efficient,  user-friendly,  and  effective  in  supporting
farmers in optimizing their agricultural practices.

The interviews also highlighted ongoing efforts  to  enhance the DSTs by focusing on
improving the irrigation modules and diversifying cover crop management options. Additionally,
considerations  for  managing irrigation  recommendations  based on constraints,  such as  water
availability during specific periods in certain regions, were discussed as valuable enhancements
for users facing similar challenges. 
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Figure 12 shows that the needed major improvements identified in the DST conceptors
include  the  numerical  aspect  of  the  model,  other  modules  and features,  climate  change and
irrigation constraints, and how other data can be integrated in the model in order to provide
accurate, actionable, and meaningful recommendations. 

Overall,  the  interviews  emphasized  the  continuous  development  and  enhancement  of
DSTs to meet  the  evolving needs  of  farmers  and stakeholders  in  the agricultural  sector.  By
addressing the identified areas for improvement, such as enhancing the numerical aspect of the
models, incorporating considerations for climate change and irrigation constraints, and actively
seeking  user  feedback,  the  DSTs  aim  to  optimize  water  efficiency,  support  sustainable
agricultural practices, and provide valuable decision-making support to farmers globally.

4.3 DST Simulation and Desk Testing of the Models

4.3.1 Pre-Optimal Simulation

As already presented,  pre-optimal  scenario refers  to  the initial  simulation  of  the tool
given the inputs used, where field variability, amount and magnitude of the water stress, and
irrigation  strategies  were evaluated  before implementing  them in the  field  (Lin et  al.,  2020;
Neupane and Guo, 2019).  This scenario also provided information and timing to commence
irrigation application. For the tools being tested, the pre-optimal simulation provided information
on the magnitude and start of water stress for each plot configuration with a defined soil type and
maize variety. In addition, it allows to detect two important information, including the start dates
of the onset of water stress and the high sensitivity to water stress. 
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Water stress generally begins when the amount of depletion exceeds the readily available
water in the soil, and in the DST simulation, it is reflected when the depletion curve or water
stress curve is being crossed, a scenario which would result to incipient stomatal closure, which
reaches its maximum at crop’s wilting point (Ramadas and Govindaraju, 2015). Knowing when
water stress occurs is important to generally help the farmer or user decide when, and where to
apply how much irrigation water at different crop growth stages to optimize water use and crop
production (Neupane and Guo, 2019). In Irre-LIS, the onset of water stress was detected when
the readily available water (RFU) curve crossed the soil water deficit curve. Figure 13 (topmost)
shows Irre-LIS simulation for S1V1, and we can see in this figure that the start date of water
stress was on June 5, 2024, when the figure  is zoomed in the tool’s online interface. In Net-Irrig,
the start  of water  stress was recorded when the water  depletion curve crossed the minimum
threshold of easily usable reserve  curve (orange-colored curve), as shown in Figure 13 (middle)
for  S1V1 simulation,  and the  start  date  of  water  stress  in  this  figure  was on  July 4,  2024.
Meanwhile, for Pixagri, the water stress started to occur when the water depletion curve crossed
the readily available soil water curve, as illustrated in Figure 13 (bottom), with a start date on
June 3, 2024 for S1V1 simulation.
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Figure 13 shows the S1V1 simulations for Irre-LIS, NetIrrig and Pixagri (top to bottom)
when the readily available soil water or the minimum threshold of easily usable reserve  curve
was crossed detecting the onset of water stress, indicating the onset of water stress.

The start dates of water stress for all combinations of soil and variety for each DST are
gathered in Table 6.
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Plot Configu-
ration Irre-LIS NetIrrig Pixagri Wago
S1V1

Blue line
(soil water

deficit)    to red
line (RFU)

05 June ‘24

Green line
(amount of water
in the soil) to yel-
low line  (RFU)

04 July ‘24

Green line
(water deple-

tion) to Yellow
line (RUF/ or
total available

water)

03 June ‘24
S1V2 04 June ‘24 12 June ‘24 03 June ‘24
S1V3 04 June ‘24 29 June ‘24 03 June ‘24
S2V1 08 June ‘24 03 July ‘24 26 May ‘24
S2V2 08 June ‘24 11 June ‘24 26 May ‘24
S2V3 08 June ‘24 28 June ‘24 26 May ‘24
S3V1 04 June ‘24 07 July ‘24 04 June ‘24
S3V2 04 June ‘24 03 July ‘24 04 June ‘24
S3V3 04 June ‘24 01 July ‘24 04 June ‘24

Table 6 shows the start date when RUF curve was crossed for each combination of all the
DSTs indicating the onset of water stress.

On the other hand, the period of high sensitivity to water stress, which usually follows
after the onset  of water stress,  is  when the plants  may exhibit  reduced growth, wilting,  and
decreased photosynthetic activity, with impacts on crop yield and quality (Seleiman et al., 2021),
and  this  type  of  sensitivity  is  influenced  by  crop  type,  growth  stage,  and  environmental
conditions (Osakabe et al., 2014). In the same manner, identifying the period of high sensitivity
to water stress is crucial in making more informed decisions about when and how much water to
apply, resulting to improved water use efficiency and crop production considering the crop’s
water requirements at different growth stages (Neupane and Guo, 2019; Zhang et al., 2020), thus,
enabling the effective use of the tool (Parkash and Singh, 2020). The period and the start date of
this period of high sensitivity to water stress was automatically indicated by each DST. In Irre-
LIS, it started on July 4, 2024 for S1V1 simulation, as shown in Figure 13 (topmost), in light red-
shaded bar;  July 12,  2024 for NetIrrig  SIVI simulation (Figure 13,  middle),  in  light brown-
shaded bar; and, June 18, 2024 for Pixagri Wago S1V1 simulation (Figure 13, bottom), identified
when the cursor was moved in the online interface of the tool. 

Table 7 list the information on the start date of high sensitivity to water stress for all
combinations of soil and variety for each DST.

Plot 
Configuration Irre-LIS NetIrrig Pixagri Wago

S1V1 04 July 2024 12 July 2024 18 June 2024
S1V2 27 June 2024 12 July 2024 18 July 2024
S1V3 27 June 2024 02 July 2024 19 July 2024
S2V1 04 July 2024 12 July 2024 19 July 2024
S2V2 27 June 2024 12 July 2024 19 July 2024
S2V3 27 June 2024 02 July 2024 19 July 2024
S3V1 04 July 2024 12 July 2024 19 July 2024
S3V2 27 June 2024 12 July 2024 19 July 2024
S3V3 27 June 2024 02 July 2024 19 July 2024

Table 7 lists the start date of high sensitivity to water stress for each simulation in all of
the DSTs. 
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 Among the three DSTs, the early onset of high sensitivity to water stress was observed in
Pixagri Wago on June 18, 2024 for the silt-loam and early grain corn (S1V1). Moreover, the
same was observed for the onset of the water stress, with the earliest recorded in Pixagri Wago
on June 3,  2024, mainly for silt-loam soil  with all  of the maize varieties  (S1V1, S1V2 and
S1V3). Similarly, Pixagri Wago also had the latest onset of high sensitivity on July 19, 2024 for
all  other  plot  configurations,  excluding  silt-loam –  early  grain  corn  (S1V1)  and  silt-loam –
medium grain corn (S1V2).

In terms of the onset of high sensitivity to water stress and water stress per tool:

 Irre-LIS had the earliest occurrence of high sensitivity on June 27, 2024 for almost all
plot configurations, except silt-loam – early grain corn (S1V1), sandy-clay – early grain
corn (S2V1), and sandy-loam – early grain corn (S3V1), with these three having started
high sensitivity on July 4, 2024. The earliest start of water stress was on June 4, 2024 for
silt-loam – early grain corn (S1V2), silt-loam – late grain corn (S1V3), sandy-loam –
early grain corn (S3V1), sandy-loam – medium grain corn (S3V2), and sandy-loam – late
grain corn (S3V3).

 The earliest high sensitivity for NetIrrig was on July 2, 2024 for silt-loam – late grain
corn (S1V3),  sandy-clay – late  grain corn (S2V3),  and sandy-loam – late  grain corn
(S3V3), while earliest water stress was on June 11 and 12, 2024 for sandy-clay – medium
grain corn (S2V2) and silt-loam – medium grain corn (S1V2), respectively.

 Again, the earliest high sensitivity was on June 18, 2024 for Pixagri Wago for silt-loam –
early grain corn (S1V1), with the earliest water stress occurring on May 26, 2024 for
sandy-clay  – early  grain  corn  (S2V1),  sandy-clay  –  medium grain  corn (S2V2),  and
sandy-clay – late grain corn (S2V3).

4.3.2 Optimal Simulation

The pre-optimal simulation provided the initial information on the date that water stress
occurred, when irrigation should be applied,  and the visualization of the magnitude of water
stress. 

It  is  important  to  note  that  optimal  simulation  is  a  scenario  when  the  soil-plant-
atmosphere continuum is accurately represented, considering factors such as weather conditions,
crop  growth,  and  water  availability,  so  that  the  most  efficient  irrigation  schedules  can  be
recommended (Shi et al., 2021; Tolomio and Casa, 2020). Hence, to be optimal, efficiency of
irrigation schedules, covering the timing and the amount irrigation water, is a pivotal criterion.

In this simulation, the three tools required different amount of irrigation water application
to  avoid  water  stress  in  running  the  optimal  models.  Specifically,  optimal  simulation  was
achieved when the soil water deficit or water depletion curve is kept above the readily available
soil water (RFU) curve in Irre-LIS (Figure 14, topmost) and Pixagri (Figure 14, bottom), which
simply means deficit is lower than the RFU. For both Irre-LIS and Pixagi, it was achieved by
estimating the amount of irrigation to be applied noting the initial parameters yielded in the pre-
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optimal simulation, or a trial-and-error exercise until the water deficit is above the RFU curve. In
NetIrrig Figure 14, middle), optimal simulation was achieved when the amount of water in soil
curve is kept above the minimum threshold of the easily usable reserve curve, and this DST
readily provided the exact amount of irrigation for the optimal simulation.
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Figure 14. Irre-LIS, NetIrrig and Pixagri Wagi optimal simulations for S1V1.

Conducting the optimal simulations yielded total irrigation for every combination for all
the DSTs, covering the May 5, 2024 sowing date until the July 18, 2024 common reference date.
We have gathered the total optimal irrigation for each combination and each tool in Table 8.

Plot configu-
ration Irre-LIS NetIrrig

Pixagri
Wago

S1V1 197 60 225
S1V2 197 132 220
S1V3 200 108 216
S2V1 175 60 246
S2V2 184 132 247
S2V3 183 120 255
S3V1 197 60 204
S3V2 200 57 206
S3V3 204 96 203

Table 8 shows the total irrigation performed per plot configuration since sowing until
July 18.

Using the Python code, we calculated the average optimal irrigation for each soil type
and maize variety with the results in Table 9.
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Soil Type/Tool Irre-LIS NetIrrig
Pixagri
Wago

Silt loam 198.0 100.0 220.3
Sandy clay 180.7 104.0 249.3
Sandy loam 200.3 71.0 204.3
Maize variety      
Early 189.7 60.00 225.0
Medium 193.7 107.0 224.3
Late 195.7 108.0 224.7

Table 9. shows the average recommended irrigation by tool, soil type and maize variety.

Using the same code, the average optimal irrigation for each soil type and maize variety 
for all DSTs were visualized as histograms and presented in Figures 15 and 16.

Figure 15 shows the average optimal irrigation for Irre-LIS, NetIrrig and  Pixagri Wago,
suggesting the tools are sensitive to soil type.
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Figure 16 shows the average optimal irrigation of the three DSTs, suggesting that, except 
for Pixagri, Irre-LIS and NetIrrig are sensitive in varying degrees to maize variety.

Results of the optimal simulation indicate that the three tools are sensitive, although in
varying degrees, to different soil types and, with exception of Pixagri Wago, to different maize
varieties  in  terms  of  recommended  irrigation  needs  in  mm averaged  from sowing  until  the
reference  period.  Among  the  three  tools,  Pixagri  Wago  yielded  the  highest  recommended
irrigation across all soil types and maize varieties, while NetIrrig provided the lowest irrigation
values, with Irre-LIS values lying in between, as presented in Table 8 above.

NetIrrig and Pixagri have the same ranking of irrigation recommendation based on soil
types, with sandy clay having the highest value at 104mm and 249mm for NetIrrig and Pixagri
Wago,  respectively,  and sandy loam the  lowest  (71mm for  NetIrrig  and 204mm for  Pixagri
Wago). On the other hand, the highest value for both NetIrrig and Pixagri Wago was the lowest
for Irre-LIS at 180.6mm for the sandy-clay soil. All the three tools have silt loam as the soil type
with  second highest irrigation at  198mm for Irre-LIS, 100mm for NetIrrig,  and 220mm for
Pixagri Wago (Table 8). 

It is important to note which among the three soil types require most, medium or less
irrigation water due to its soil texture which affects water holding capacity. Among the three soil
types,  studies indicate that sandy-clay soil  requires less frequent irrigation water to maintain
optimal moisture levels (Ahmed et al., 2015), with silt loam suggesting more frequent irrigation
than sandy clay (Chu et al., 2020), while sandy loam requiring most water for irrigation due to its
low water-holding capacity (Reddy et al., 2018; Chu et al., 2020; Ahmed et al., 2015; Jain et al.,
2017;  Otie  et  al.,  2022).  However,  this  pattern  was  not  accurately  indicated  in  the  results
presented in Table 8, with only Irre-LIS providing the least irrigation water with 180.7mm for
sandy clay, while other tools did not provide the irrigation pattern for each specific soil type
based on the literature.
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Further, in terms of maize variety, the results indicate that the three tools are generally not
as highly sensitive to different grain corns when compared to the irrigation recommendation for
the different soil types.  However, for NetIrrig, the sensitivity is strongly contrasted between the
early grain corn and both the medium and late corn variety. Sensitivity of Irre-LIS irrigation
recommendation to maize varieties is low, while no significant sensitivity can be concluded for
Pixagri against different maize varieties, since the simulation was using the grain corn varieties
in the Pixagri,  where values  for agronomic traits  and characteristics are  not likely or highly
contrasted (Figure 16).

Research indicates that among the three maize varieties,  the early grain corn has the
lowest total irrigation water needs, with late grain corn having the highest and medium grain
corn in between the two varieties (Trout and Bausch, 2012; Flynn et al., 2023; Rajasekar et al.,
2020). The result of the simulation suggests that the tools, except for Pixagri Wago, is following
the pattern, with early grain corn variety having the lowest total irrigation and late grain corn
having the highest (Figure 16).

4.3.3 Comparison of the Recommended Irrigation to the Actual Irrigation Consumption

Based on the collected and available actual irrigation consumption of the Nicolas Gassier
study plot in 2023, the total irrigation applied from May 5 to July 18 was 145 mm. Again, the
soil type of the plot is silt loam and the maize variety cultivated was P0725 (medium maturity
variety). The DSTs  irrigation recommendations for this soil type and maize was then used and
compared  with  the  actual  irrigation  consumption  of  the  plot  in  2023,  and  the  results  were
gathered in Table 10. 

 Among  the  three  tools,  the  irrigation  recommendation  of  the  NetIrrig  indicates  an
underestimation when compared to the actual irrigation consumption of the same soil type and
maize  variety,  implying  that  the  tool’s  recommendation  was  rather  applying  less  irrigation,
(Table 9). On the other hand, both Irre-LIS and Pixagri indicates overestimation, hence, both
tools were recommending more irrigation water than the actual irrigation values for the same soil
type and maize variety (silt loam and medium maturity variety).

Average Irrigation for May 5, 2024 – July 18,
2024 (in mm)

Difference from Actual Irriga-
tion Consumption (in mm)

Soil Type/Tool Irre-LIS NetIrrig Pixagri Irre-LIS NetIrrig Pixagri
Silt loam 198.0 100.0 220.3 53.0 -45.0 75.3
Maize variety            
Medium 193.7 107.0 224.3 48.7 -79.3 79.3

Table 10 shows that NetIrrig is underestimating while Irre-LIS and  Pixagri are 
overestimating when compared to the actual irrigation consumption in 2023. 

It would be interesting to note if the same results would be observed when using the 2024
actual irrigation consumption of the plot when available.
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5 CONCLUSION

The  trajectory  of  development  and  implementation  of  digital  DSTs  in  irrigation  is
increasing over the last few years in France, and it is expected to continue given the focus on
agroecological transition in the face of pressing challenges posed by climate change. There is a
great emphasis  given by the conceptors  on agroecological  and sustainable features of these
DSTs with additional consideration on the practical and easy utilization by the users, although
some  needed  improvements,  such  as  the  level  of  complexity  through  communication  and
technical assistance, enhancement of decision-making processes that accurately integrates factors
affecting irrigation management, and maximization of water efficiency, have been recognized.

Importantly,  results  of  the  optimal  simulations  indicates  marked  differences  in  the
irrigation recommendation across the three tools being tested.  The tools are sensitive,  but in
varying degrees, to soil types and, with exception of Pixagri Wago, maize varieties, as indicated
in the irrigation being recommended. The pattern for the irrigation recommendation for soil types
based on literature was not accurately observed, with only Irre-LIS providing the least irrigation
water for sandy clay at 180.7mm. In terms of the inter-tool sensitivity to maize variety, the tools
were not as highly sensitive compared to soil types. Further, although some patterns were already
observed given that  the length of the reference period used was shorter,  covering the whole
campaign period of the crop would validate these patterns. 

There were, however, limitations in this study that should be addressed to ensure better
and better  results  in  the  future  investigations.  Again,  tt  would  be  interesting  to  conduct  the
simulation  at  the  near-end  of  the  campaign  to  cover  the  whole  cropping  period,  since  the
simulations in this study only covered about half of the cropping period, as the tools could only
predict few days from the reference date selected when the simulations were run. Also, although
the  tools  have  already  available  values  of  the  parameters  in  the  models,  such  as  for  the
agronomic traits of the crops, it would help to use values that closely represent, for instance, the
agronomic traits of different maize or crop varieties. More interesting is to compare these tools
for year 2024 on many plots, for instance, 100 plots located at different points in France, with
more crops and more combinations, which are usually determined by the number of soil types
and  crop  varieties.  The  challenge  in  doing  this  kind  of  study  would  be  -  firstly,  the
parameterization of the tools and in carefully making the parameters as comparable or close as
possible from one tool to another; and, secondly, the time and cost involved, in the case of trial
version of the tool (as there would be additional cost beyond 10 hectares, in running the multiple
simulations, since some tools take time to process the simulation, and some tools do not provide
the exact irrigation application amount, hence, it is done on a trial-and-error basis. To address the
cost constraint for the trial version, it would help to use the same plot for all the simulations and
just  change  the  parameters  every  simulation.  The  aim of  every  DST is  to  maximize  water
efficiency,  reduce  water  use,  and  improve  productivity,  and  it  is  important  that  these  DSTs
perform optimally using accurate parameters and values that represent reality. When these are
ensured, the benefits of the DSTs can be significant.
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6 APPENDICES

6.1 Optimal Simulation Results

6.1.1 Irre-LIS

S1V1 Simulation

S1V2 Simulation
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S1V3 Simulation

S2V1 Simulation
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S2V2 Simulation

S2V3 Simulation
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S3V1 Simulation

S3V2 Simulation
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S3V3 Simulation

6.1.2 NetIrrig

S1V1 Simulation
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S1V2 Simulation

S1V3 Simulation
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S2V1 Simulation

S2V2 Simulation
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S2V3 Simulation

S3V1 Simulation
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S3V2 Simulation

S3V3 Simulation
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6.1.3 Pixagri Wago

S1V1 Simulation

S1V2 Simulation
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S1V3 Simulation

S2V1 Simulation
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S2V2 Simulation

S2V3 Simulation
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S3V1 Simulation

S3V2 Simulation
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S3V3 Simulation
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6.2 Python Code for the Computation and Visualization of DST Sensitivity

import pandas as pd
import matplotlib.pyplot as plt

# Your data
Irrigation_IrreLIS = [197, 197, 200, 175, 184, 183, 197, 200, 204]
Irrigation_NetIrrig = [60, 132, 108, 60, 132, 120, 60, 57, 96]
Irrigation_Pixagri = [225, 220, 216, 246, 247, 255, 204, 206, 203]
Soil_type = ['silt loam', 'silt loam', 'silt loam', 'Sandy clay', 'Sandy clay', 'Sandy clay', 'Sandy 
loam', 'Sandy loam', 'Sandy loam']
Maize_variety = ['Early', 'Med', 'Late', 'Early', 'Med', 'Late', 'Early', 'Med', 'Late']

# Create DataFrame for Soil_type
data_soil = pd.DataFrame({
    'Irrigation_IrreLIS': Irrigation_IrreLIS,
    'Irrigation_NetIrrig': Irrigation_NetIrrig,
    'Irrigation_Pixagri': Irrigation_Pixagri,
    'Soil_type': Soil_type
})

# Calculate means for each soil type
means_soil = data_soil.groupby('Soil_type').mean()
print(means_soil)

# Create DataFrame for Maize_variety
data_variety = pd.DataFrame({
    'Irrigation_IrreLIS': Irrigation_IrreLIS,
    'Irrigation_NetIrrig': Irrigation_NetIrrig,
    'Irrigation_Pixagri': Irrigation_Pixagri,
    'Maize_variety': Maize_variety
})

# Calculate means for each soil type
means_variety = data_variety.groupby('Maize_variety').mean()
print(means_variety)

######################### First two figures ##################################

# Plotting means by Soil Type
fig1, ax1 = plt.subplots(figsize=(6, 4))

53



means_soil.plot(kind='bar', ax=ax1, color=['blue', 'green', 'red'])
ax1.set_title('Mean Values of Irrigation Tools by Soil Type')
ax1.set_xlabel('Soil Type')
ax1.set_ylabel('Irrigation Mean Value (mm)')
ax1.set_xticklabels(means_soil.index, rotation=0)
ax1.legend(title='Irrigation Tools')

# Plotting means by Maize Variety
fig2, ax2 = plt.subplots(figsize=(6, 4))
means_variety.plot(kind='bar', ax=ax2, color=['blue', 'green', 'red'])
ax2.set_title('Mean Values of Irrigation Tools by Maize Variety')
ax2.set_xlabel('Maize Variety')
ax2.set_ylabel('Irrigation Mean Value (mm)')
ax2.set_xticklabels(means_variety.index, rotation=0)
ax2.legend(title='Irrigation Tools')

############################ Figure number 3 ################################

# Plotting means by Soil Type and Maize Variety
fig3, (ax3, ax4) = plt.subplots(1, 2, figsize=(8, 4))

# Plot for Soil Type
ax3.bar(means_soil['Irrigation_IrreLIS'].index, means_soil['Irrigation_IrreLIS'], color='blue')
ax3.set_title('Irrigation_IrreLIS by Soil Type')
ax3.set_xlabel('Soil Type')
ax3.set_ylabel('Mean Value (mm)')
ax3.set_xticklabels(means_soil.index, rotation=0)

# Plot for Maize Variety
ax4.bar(means_variety['Irrigation_IrreLIS'].index, means_variety['Irrigation_IrreLIS'], 
color='blue')
ax4.set_title('Irrigation_IrreLIS by Maize Variety')
ax4.set_xlabel('Maize Variety')
ax4.set_ylabel('Mean Value (mm)')
ax4.set_xticklabels(means_variety.index, rotation=0)

############################ Figure number 4 ################################

# Plotting means by Soil Type and Maize Variety
fig4, (ax5, ax6) = plt.subplots(1, 2, figsize=(8, 4))
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# Plot for Soil Type
ax5.bar(means_soil['Irrigation_NetIrrig'].index, means_soil['Irrigation_NetIrrig'], color='green')
ax5.set_title('Irrigation_NetIrrig by Soil Type')
ax5.set_xlabel('Soil Type')
ax5.set_ylabel('Mean Value (mm)')
ax5.set_xticklabels(means_soil.index, rotation=0)

# Plot for Maize Variety
ax6.bar(means_variety['Irrigation_NetIrrig'].index, means_variety['Irrigation_NetIrrig'], 
color='green')
ax6.set_title('Irrigation_NetIrrig by Maize Variety')
ax6.set_xlabel('Maize Variety')
ax6.set_ylabel('Mean Value (mm)')
ax6.set_xticklabels(means_variety.index, rotation=0)

############################ Figure number 5 ################################

# Plotting means by Soil Type and Maize Variety
fig5, (ax7, ax8) = plt.subplots(1, 2, figsize=(8, 4))

# Plot for Soil Type
ax7.bar(means_soil['Irrigation_Pixagri'].index, means_soil['Irrigation_Pixagri'], color='red')
ax7.set_title('Irrigation_Pixagri by Soil Type')
ax7.set_xlabel('Soil Type')
ax7.set_ylabel('Mean Value (mm)')
ax7.set_xticklabels(means_soil.index, rotation=0)

# Plot for Maize Variety
ax8.bar(means_variety['Irrigation_Pixagri'].index, means_variety['Irrigation_Pixagri'], 
color='red')
ax8.set_title('Irrigation_Pixagri by Maize Variety')
ax8.set_xlabel('Maize Variety')
ax8.set_ylabel('Mean Value (mm)')
ax8.set_xticklabels(means_variety.index, rotation=0)

# Show both figures
plt.tight_layout()
plt.show()
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